Check even answers 4.4

4.4 \#2

The logarithm of a quotient of two numbers is the same as the DIFFERENCE of the logarithms of these numbers.
So $\log _{5} \frac{25}{125}=\underline{\log _{5} 25}-\underline{\log _{5} 125}=2-3=-1$
4.4 \#8 (a) $\log \frac{A}{B}$ is the same as $\log A-\log B \quad$ TRUE
(b) $\frac{\log A}{\log B}$ is the same as $\log A-\log B \quad$ FALSE

Check work for 4.4
(17.)

$$
\begin{array}{ll}
\log _{2} 6-\log _{2} 15+\log _{2} 20 \\
\log _{2} \frac{6}{15}+\log _{2} 20 & 2^{x}=2^{3} \\
\log _{2} \frac{6}{15}\left(\frac{20}{1}\right. & x=3 \\
\log _{2} \frac{120}{15} \\
\log _{2} 8=x \\
2^{x}=8 & x=3 \\
2^{x}=2^{3} &
\end{array}
$$

Check work for 4.4

$$
\begin{aligned}
& \text { (47.) } \log \left(\frac{x^{2}+4}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}\right)^{\frac{1}{2}} \\
& \frac{1}{2}\left[\log \left(x^{2}+4\right)-\log \left(x^{2}+1\right)\left(x^{3}-7\right)^{7}\right] \\
& \frac{1}{2}\left(\log \left(x^{2}+4\right)-\left(\log \left(x^{2}+1\right)+\log \left(x^{3}-7\right)^{2}\right)\right) \\
& =\frac{1}{2} \log \left(x^{2}+4\right)-\frac{1}{2} \log \left(x^{2}+1\right)-2\left(\frac{1}{2}\right) \log \left(x^{3}-7\right) \\
& \log \frac{1}{2}\left[\log \left(x^{2}+4\right)-\log \left(x^{2}+1\right)-2 \log \left(x^{3}-7\right)\right] \\
& \quad \operatorname{book} \operatorname{answer}
\end{aligned}
$$

Applying Properties (Laws) of Logarithms

1. $\log _{3} x, \log _{6} x, \log _{2} x$, and $\log _{5} x$ are all examples of general logarithms.
2. A COMMON logarithm has a base of 10 .

3. A NATURAL logarithm has a base of e \qquad e.

Therefore it can be written as \square \log or $\ln _{e} x$ but is usually abbreviated as \square $\ln x$
4. a) The number $\mathrm{e} \approx$ \qquad 2.718
b) $\log 10=$ \qquad 1
c) le $=$ \qquad d) $\log 1=$ \qquad
$\begin{aligned} & \text { e) } \log 0=\text { indef } \\ & \rightarrow 10^{x}=0 \text { not } \log -10=\text { under fin } \\ & \text { possible }\end{aligned} \quad \rightarrow 10^{x}=-10$

CHECK		
ANSWERS:		
$-\frac{49}{25}$	$-\frac{3}{2}$	$-\frac{1}{4}$
$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$
$\frac{4}{3}$	$\frac{7}{2}$	$\frac{15}{4}$
2.718	10	
e	8	$64 e^{5}$
$\log _{10} x$	$\log ^{2} x$	
$\log _{e} x$	$\ln x$	
$\ln _{e} x$	81	81
0	1	1
general		
undefined		
undefined		

Solve for x using properties of logarithms. Show all steps by applying one property at a time.
NO CALCULATOR!
5. $\frac{1}{2} \log x+\log 3=\log 27$

$$
\begin{aligned}
& \log x^{\frac{1}{2}}+\log 3=\log 27 \\
& \log 3 x^{\frac{1}{2}}=\log 27 \\
& 3 x^{\frac{1}{2}}=27 \\
& \left(x^{\frac{1}{2}}\right)^{2}=(9)^{2} x=81
\end{aligned}
$$

6. $\frac{1}{2} \ln x+\ln 3=\ln 27$
7. $2 \log _{2} \mathrm{x}+\log _{2} 9=4$
\rightarrow Carefull! "Merge" logs together on the left side of the equation then solve by rewriting in exponential form.

$$
\begin{aligned}
& \log _{2} x^{2}+\log _{2} 9=4
\end{aligned}
$$

CHECK ANSWERS: $-\frac{49}{25} \quad-\frac{3}{2} \quad-\frac{1}{4}$ $\begin{array}{lll}\frac{1}{5} & \frac{1}{4} & \frac{1}{3}\end{array}$ $\begin{array}{lll}\left(\frac{4}{3}\right. & \frac{7}{2} & \frac{15}{4} \\ 2.718 & 10\end{array}$

e $864 e^{5}$ $\log _{10} x \quad \log x$ $\log _{e} x \quad \ln _{e} x$ | $\ln x$ | 81 | 81 |
| :---: | :---: | :---: |
| 0 | 1 | 1 |
| general | | | undefined undefined

Use properties of logarithms to evaluate each expression.
Clearly show all steps by applying one property at a time. NO CALCULATOR.
15. Given that $\log 16=1.204$, find $\log 400$.

$$
\begin{aligned}
\log 400 & =\log (4)(100) \\
& =\log 4+\log 100 \\
& =\log 16^{\frac{1}{2}}+\log 10^{2} \\
& =\frac{1}{2} \log 16+2 \log 10
\end{aligned}
$$

